Composite Material for Thermochemical Energy Storage Using CaO/Ca(OH)2
نویسندگان
چکیده
منابع مشابه
Isothermal Redox Kinetics of Co3O4-Fe2O3 Nano-Composite as a Thermochemical Heat Storage Material
Isothermal redox kinetics of as-received Co3O4 (AC), 1 h ball milled Co3O4 (BC), and 1 h ball milled Co3O4-15wt.% Fe2O3 (BCF) was investigated at various temperatures (1130, 1100, 1070, and 1040 °C for reduction and 830, 860, and 890°C for re-oxidation) by thermogravimetric method. It was found that mechanic...
متن کاملMicroencapsulation of Butyl Stearate as Phase Change Material by Melamine Formaldehyde Shell for Thermal Energy Storage
Butyl stearate as a phase change material was microencapsulated within melamine-formaldehyde resin using emulsion polymerization. Morphology and thermal specification of produced microcapsules were studied by Fourier transform infrared spectroscopy, FT-IR, scanning electron microscopy, SEM, and Differential scanning calorimetry analysis, DSC. FT-IR spectra validated the existence of the butyl s...
متن کاملThermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage
To store low-temperature heat below 100 ◦C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM) in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite ...
متن کاملMultifunctional composite materials for energy storage in structural load paths
This paper presents an overview of the research performed to date by a Swedish interdisciplinary team of scientists striving to develop multifunctional composite materials for storage of electric energy in mechanical load paths. To realise structural batteries from polymer composites, research pursued on carbon fibres for use as negative electrode in the battery as well as on polymer electrolyt...
متن کاملComposite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures
Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Industrial & Engineering Chemistry Research
سال: 2015
ISSN: 0888-5885,1520-5045
DOI: 10.1021/acs.iecr.5b02688